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Relation between grain boundary segregation

and grain boundary character in FCC alloys

P. WYNBLATT∗, ZHAN SHI
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh,
PA 15213, USA
E-mail: pw01@andrew.cmu.edu

An analytical model of segregation at grain boundaries, which takes into account all five
macroscopic parameters of grain boundary character, has been developed. The model is
based on a combination of previous bond energy treatments of grain boundary energy and
of segregation to free surfaces. It is tested by comparing its predictions against previous
computations of segregation to symmetrical twist grain boundaries in simple fcc alloys
obtained by Monte Carlo simulations in conjunction with embedded atom method
potentials. The comparison shows good agreement with the previous computer
simulations. Examples of model predictions in the case of asymmetric grain boundaries are
also provided. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
It is now possible to characterize vast sets of grain
boundaries (GB’s) with respect to the five macroscopic
degrees of freedom (DoF’s) of GB character by au-
tomated experimental techniques. Whereas computer
simulation remains the most reliable approach for pre-
dicting GB properties, this approach cannot easily be
used to predict the behavior of GB’s over the vast 5-
dimensional space represented by the five DoF’s. Thus,
there is a need for analytic techniques that are capable
of calculating GB properties. This paper represents an
attempt to develop an analytical model of GB segrega-
tion, as a function of the five DoF’s.

Interfacial segregation in a multi-component system
refers to the enrichment (or depletion) of interfaces with
respect to one or more components relative to the bulk
composition [1]. This phenomenon has been widely
studied from both experimental and theoretical perspec-
tives, because of its influence on many important mate-
rials properties. Our approach follows the approximate
statistical mechanical treatments of segregation origi-
nally developed by McLean [2], whose results may be
expressed in the case of a binary solution as:

xs

1 − xs
= x

1 − x
exp

(
−�Gseg

RT

)
(1)

where x and xs are the atom fractions of the segregating
component in the bulk and at the interface, respectively,
R and T are the gas constant and absolute temperature,
and �Gseg is the free energy of segregation. For a sub-
stitutional solid solution, the latter quantity represents
the free energy change associated with the exchange of
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an atom of the segregating species located in the bulk
with an atom of the other species located at the interface
[3]. Since many binary alloy systems may reasonably
be approximated as regular solutions, the entropy of
segregation is often neglected, and the free energy of
segregation is set equal to the enthalpy of segregation,
�Hseg. As will be shown below, �Hseg is a function of
both x and xs . If an expression for the enthalpy of seg-
regation is available, it may then be used in Equation
1 to compute the interfacial composition as function of
bulk composition and temperature.

Several approaches have been developed to evaluate
the enthalpy of segregation. Here, the general approach
used is one in which the total enthalpy of segregation is
taken to consist of a sum of a chemical (or bond energy)
contribution and an elastic strain energy contribution
[3].

Specifically, we propose a model to calculate the
equilibrium composition of a grain boundary charac-
terized by five macroscopic DoF’s. Thus far, no model
with such capabilities has been developed. We use two
previous pieces of work as a basis for the model, (a)
a multi-layer surface segregation model [4] and (b) a
semi-empirical grain boundary energy model written
in terms of the five macroscopic DoF’s [5]. The latter
has recently been used with some considerable success
to rationalize the results of GB wetting experiments
in polycrystalline alloys. Both approaches have relied
heavily on the prior work of Lee and Aaronson [6, 7].
In this paper, we develop the GB segregation model and
test it by comparing its predictions against the results
of computer simulations of GB composition obtained
for sets of twist boundaries in four simple alloys.
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2. Multi-layer surface segregation
We begin with a review of the surface segregation
model. This is due to Lee and Aaronson [6, 7], as mod-
ified by Steigerwald et al. [4], and is suitable for the
description of segregation to a surface of orientation
(hkl) in a binary substitutional solution. In the model,
the indices of the terminating planes must be chosen
such that h ≥ k ≥ l and reduced to the lowest integers.
The composition of the i th layer in the vicinity of the
(hkl) surface has the same form as that of Equation 2
written in the regular solution approximation, namely:

ln
xi

1 − xi
= ln

x

1 − x
− �Hi

seg

RT
(2)

where xi and x are the atomic fractions of the segre-
gating species in the i th atomic layer and in the bulk,
respectively, and �Hi

seg is the enthalpy of segregation
to the i th layer, which includes both chemical and elas-
tic energy terms. Near-surface planes are identified by
an index i , where i = 1 identifies the outer-most atom
plane. It is also necessary to define a second index, j ,
which counts the planes from any given plane i . These
indices are illustrated in the schematic of Fig. 1 and are
also explained in greater detail in the paper of Lee and
Aaronson [6].

We consider an AB substitutional solid solution in
which the solute species is taken to be component B.
For convenience, we also assume that the solute corre-
sponds to the segregating species. Although the solute
is often the segregating species in solid solutions, this
is not invariably the case. However, in the event that
the solvent is the segregating species, the enthalpy of
segregation for the solute calculated by the model will
turn out to be positive. From Equation 2, it can be seen
that a positive enthalpy will produce a lower i th layer
concentration of solute than in the bulk, thus correctly
predicting solvent segregation for such a case.

For an fcc crystal surface terminated by a plane (hkl),
the enthalpy of segregation to the i th layer may readily
be computed from the bond energy change associated
with the exchange of a segregating species atom in the
bulk with an atom of the other species located in layer i .
In addition to the bond energy changes, the exchange of
a solute atom in the bulk with a solvent atom in the i th
atomic layer will lead to a change in the elastic strain
energy associated with the solute atom. This is because
part of the elastic energy of the solute atom in the bulk
will be relieved as it comes closer to the surface. The
decrease in elastic strain energy of a solute atom in the

Figure 1 Schematic of a GB illustrating the definition of the index j for
a value of i = 2. The arrows show the bonds of an atom in the i th layer
from the GB plane.

i th layer, due to its vicinity to the surface, will be de-
noted as �Ei

el , defined as a positive quantity. Details of
the calculation of this quantity will be provided later. In
the mean time, we will include it in the overall enthalpy
of segregation.

Summing over bond and elastic strain energy terms
yields the segregation enthalpy for a free surface [4]:

�Hi
seg = 2ω

[
zx − zi xi −

J∑
j=1

z j xi+ j −
i−1∑
j=1

z j xi−1

−1

2

J∑
j=i

z j

]
− 1

2
(εB B − εAA)

J∑
j=i

z j − �Ei
el

for i ≤ J (3a)

�Hi
seg = 2ω

[
zx−zi xi −

J∑
j=1

z j (xi+ j + xi− j )

]
−�Ei

el

for i > J (3b)

where ω is the regular solution constant is given by:

ω = εAB − 1

2
(εAA + εB B) (4)

Here zi is the number of nearest neighbors of an atom in
the i th layer which also lie in the i th layer, and z j is the
number of nearest neighbors of an atom in the i th layer
which lie in the j th layer, and the total coordination of
an atom in the bulk is given by: z = zi + 2

∑J
j=1 z j .

εAA and εB B are the energies of bonds between pairs
of like-atoms, and εAB is the bond energy of an unlike
pair (all taken to be negative quantities). The maximum
value of j is denoted by J , and represents the farthest
plane containing nearest neighbors of atoms in the i th
layer. It is defined by J = (h + k)/2 for h, k, l odd,
and J = (h + k) for h, k, l mixed.

3. Derivation of the GB segregation model
The enthalpy of grain boundary segregation can be cal-
culated by the same procedure. However, it is neces-
sary to adjust atom coordination to the environment of a
grain boundary. For an atom in the i th layer of a surface,
the number of out of plane bonds directed towards the
surface is

∑J
j=1 z j . Of these,

∑i−1
j=1 z j are connected to

neighbors, and the number of broken bonds is
∑J

j=i z j .
When a GB is created by bringing together two crystals
terminated by (hkl) surfaces at some arbitrary twist an-
gle, then some of the broken bonds will reconnect across
the boundary to produce a decrease in the number of
broken bonds. We define a parameter P to represent
the fraction of reconnected broken bonds in the near-
boundary region when the plane (hkl) terminates one
side of a GB. Thus, for an atom in the i th layer on one
side of the boundary, P

∑J
j=i z j bonds are connected to

the surface of the crystal on the other side of the grain
boundary, and the remaining (1 − P)

∑J
j=i z j bonds

are still broken.
We now compute the bond energy change associated

with the exchange of a solute (B) atom in the bulk with
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a solvent (A) atom in the i th layer. For clarity, this is
performed in four steps.

Step 1. The bond energy change associated with remov-
ing a B atom from the bulk is given by:

E1 = −
[

zi + 2
J∑

j=1

z j

]
[xεB B + (1 − x)εAB] (5a)

Step 2. Replacing this B atom in the i th near-GB layer
produces the following bond energy change:

E2 = + zi [xiεB B + (1 − xi )εAB]

+
i−1∑
j=1

z j [εB B xi− j + εAB(1 − xi− j )]

+
J∑

j=1

z j [xi+ jεB B + (1 − xi+ j )εAB]

+P
J∑

j=i

z j [x ′εB B + (1 − x ′)εAB] (5b)

where x ′ is some suitable average of the near-
interface composition of the crystal on the other side
of the boundary.

Step 3. Removing an A atom from the i th near-GB layer
changes the bond energy by:

E3 = − zi [xiεAB + (1 − xi )εAA]

−
i−1∑
j=1

z j [xi− jεAB + (1 − xi− j )εAA]

−
J∑

j=1

z j [xi+ jεAB + (1 − xi+ j )εAA]

− P
J∑

j=i

z j [x ′εAB + (1 − x ′)εAA] (5c)

Step 4. Finally, replacing an A atom in the bulk yields:

E4 = +
[

zi + 2
J∑

j=1

z j

]
[xεAB + (1 − x)εAA]

(5d)

Summing over the four steps yields an expression
similar to Equation 3a for the case i ≤ J , but with
correction terms that account for the larger coordination
of atoms near the grain boundary, as well as interaction
terms across the grain boundary.

�Hi
seg = 2ω

[
zx − zi xi −

J∑
j=1

z j xi+ j −
i−1∑
j=1

z j xi− j

− P
J∑

j=i

z j x ′ − 1

2
(1−P)

J∑
j=i

z j

]
(6a)

− 1

2
(1 − P)(εB B − εAA)

J∑
j=i

z j − �Ei
el

For atoms in layers i > J , the enthalpy of segregation
is unchanged from Equation 3b, i.e.:

�Hi
seg = 2ω

[
zx − zi xi−

J∑
j=1

z j (xi+ j + xi− j )

]
−�Ei

el

4. GB energy model
Here we summarize the GB energy model [5], which is
also used as a basis for the present segregation model.
A GB can be created by joining two crystals together.
Four of the five DoF’s of the GB can be determined by
specifying the two crystallographic planes (hkl)1 and
(hkl)2, which terminate the adjacent crystals on either
side of the grain boundary. The fifth DoF is defined by
the twist angle, φ, of the two crystals with respect to
each other about an axis perpendicular to the GB plane.
Wolf [8–10] has performed computer simulations on
grain boundary energy as a function of twist angle for
boundaries having specified terminating planes. That
work has shown that the grain boundary energy is es-
sentially constant over most of the twist angle range
except for cusps at certain specific values. This con-
stant value will be referred to as the plateau value, as
illustrated schematically in Fig. 2.

Lee and Aaronson [6] have developed a broken bond
model which allows the calculation of the energy of a
surface of orientation (hkl) in a pure (one component)
material:

γ s
(hkl) = αε

a2
√

h2 + k2 + l2

J∑
i=1

J∑
j=i

z j (7a)

where α is a constant which adopts values of 2 for (hkl)
all odd and of 1 for (hkl) mixed, ε is the energy of a
broken bond, and a is the lattice constant. The double
sum on z j represents the number of broken bonds at a
surface of orientation (hkl), as described in more detail
by Lee and Aaronson [6].

Figure 2 Schematic illustration of the energy of a twist GB vs. twist
angle. Note that the energy is essentially constant over most of the twist
angle range at a value referred to as the “plateau energy”, except for
cusps which occur at particular values of twist angle (see Section 4).
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The Lee and Aaronson model has been adapted to
GB’s by Wynblatt and Takashima [5]. For the case of
a GB terminated by two planes of identical (hkl), the
(approximately constant) plateau GB energy is written:

γ M
(hkl) = 2αε

a2
√

h2 + k2 + l2
V M

(hkl)

J∑
i=1

J∑
j=i

z j (7b)

Here we use the superscript M as a reminder that these
terms refer to the maximum (i.e. plateau) values. The
differences between Equations 7a and b include a factor
of 2 in 7b, which reflects the fact that a GB consists of
two crystals each terminated at a surface, and a factor,

V M
(hkl) = F[gt (1 − fsk) + fsk] (8)

which represents the fraction by which the number of
broken bonds of the two surfaces is reduced upon cre-
ating a grain boundary by joining the two crystals with
(hkl) surfaces. F is an adjustable parameter, and the
quantities gt and fsk are related to surface roughness,
as discussed in more detail below. V M

(hkl) can also be
considered to represent a free-volume-like parameter
for the boundary, such that the smaller the free volume,
the lower the number of broken bonds across the GB.

Free volume is an important property of GB’s, as has
been demonstrated in the computer simulations of Wolf
[8–10], which showed that GB energy is essentially
proportional to free volume. This trend was used as
one of two guiding criteria in the formulation of the
GB energy model of ref. [5]. The free volume is also
used in the present segregation model to evaluate both
the parameter P , as well as the solute strain energy term,
�Ei

el . We therefore provide a detailed explanation the
origin of this term in Section 4.1 below.

The scheme of Van Hove and Somorjai [11] can be
used to synthesize an (hkl) surface from microfacets,
which represent terraces, steps and kinks. Thus, any
fcc (hkl) surface, which lies within the standard stere-
ographic triangle (h ≥ k ≥ l), can be decomposed into
(111), (111̄) and (100) microfacets. For this choice of
microfacet orientations, the number of atoms associated
with each microfacet is given by:

n(111) : n(111̄) : n(100) = (k + l) : (k − l) : (h − k) (9a)

If the three values of n(hkl) are ranked in magnitude, the
largest value will give the relative number of atoms as-
sociated with terrace sites, the middle value will be the
number of atoms associated with step sites and the low-
est value will be the number of atoms in kink sites, i.e.:

nmin : nmid : nmax : (nmin + nmid + nmax)

= kink atoms : step atoms : terrace

atoms : total atoms (9b)

The underlying concept in formulating the free-
volume-like parameter, F[gt (1 − fsk) + fsk], is that
the “rougher” the two surfaces which adjoin the GB,
the larger the free-volume. gt (where t stands for {111}
or {100}) is intended to represent the roughness of

the two possible types of terrace. Values of gt corre-
sponding to the fcc structure have been obtained pre-
viously [5], by demanding that the GB energy be pro-
portional to free-volume. (These values are g{111} =
0.47 and g{100} = 0.62). fsk is the fraction of sur-
face atoms associated with steps and kinks, computed
from Equation 9b. The larger fsk , the larger the rough-
ness, and hence the larger the free volume. The term,
gt (1− fsk), is the terrace contribution to the roughness,
and declines as the overall roughness of the surface, fsk ,
increases.

Finally, we define F as an adjustable parameter,
which may be used to scale the grain boundary energy
to a known surface energy. When only relative grain
boundary energies are required, the parameter F may
be omitted. However, for the purposes of evaluating GB
composition, a realistic value ofF needs to be included.

As shown previously [5], the inclusion of the free-
volume-like term of Equation 8 into the expression for
GB energy (Equation 7b) leads to proportionality be-
tween GB energy and free volume, in spite of the com-
plex dependence of V M

(hkl) on the structure of an (hkl)
surface. Thus, in this regard, the GB energy model is
consistent with Wolf’s GB computer simulations [8–
10]. Another important result of those simulations was
used as a second guiding principle in the formulation
of the GB energy model. The simulations showed that
the energy of a GB terminated by two surfaces of dif-
ferent (hkl) varies linearly with (but is not proportional
to) mean surface energy, (γ s

(hkl)1
+ γ s

(hkl)2
)/2.

Thus, for the case of GB’s bounded by crystallo-
graphically different planes, the plateau energy is writ-
ten simply as the arithmetic mean of two GB’s, each
bounded by planes of identical (hkl):

γ M
(hkl)1(hkl)2

= [
γ M

(hkl)1
+ γ M

(hkl)2

]/
2 (10)

This simple form for the energy of a GB terminated by
different (hkl) surfaces ensures that both of the results of
Wolf’s simulations, mentioned above, are reproduced
by the GB energy model. The GB energy is linearly
dependent on mean surface energy, but the proportion-
ality between GB energy and surface energy is broken
by the inclusion of the free-volume-like term. Also, the
energy of a GB terminated by two different (hkl) planes
is proportional to the free volume of the boundary, if it
is expressed in an analogous manner [5]:

V M
(hkl)1(hkl)2

= [
V M

(hkl)1
+ V M

(hkl)2

]/
2 (11)

i.e., the free-volume of a boundary between different
planes is taken to be the arithmetic mean of the free
volumes of boundaries terminated by identical planes.

In order to introduce the 5th DoF, a dependence on
twist angle must be included in the energy. The energy
of a general boundary is written as:

γ(hkl)1(hkl)2 (θ ) = γ m
(hkl)1(hkl)2

+ f (θ )
{
γ M

(hkl)1(hkl)2

−γ m
(hkl)1(hkl)2

}
(12)∗

∗Note, the version of this equation in the original paper [ref. 5] contains
a misprint.
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where γ m
(hkl)1(hkl)2

and γ M
(hkl)1(hkl)2

are GB energy minima
(at cusps) and maxima (at the plateau value), respec-
tively, for boundaries terminated on the planes (hkl)1
and (hkl)2. The function f(θ ) is used to mimic a Read-
Shockley trend in the vicinity of cusps and is approxi-
mated by [5]:

f (θ ) = sin1/4(θ ) (13)

where θ is simply related to the twist angle, φ [12]. θ

has a zero value at cusps, and corresponds to the value
of twist angle, φ, at which steps on the GB terminating
surfaces are aligned (for {100} and {111} terminating
surfaces, which do not have steps, close packed rows are
used). For arbitrary (hkl)1 and (hkl)2, cusps generally
occur 180◦ apart. If one of the terminating planes is
(111) or (100) then additional cusps will be found as a
function of θ , with a periodicity of 180◦/n, where n = 3
for (111), and n = 2 for (100). Thus, f (θ ) provides a
simple means of including the fifth macroscopic DoF
in the model. For f (θ ) = 1, Equation 12 reduces to the
plateau GB energy, γ M

(hkl)1(hkl)2
, which accounts for the

variation of GB energy as a function of the other four
DoF’s. For f (θ ) = 0, Equation 12 reduces to the cusp
energy.

The minimum energy at the cusps is taken to have
the value:

γ m
(hkl)1(hkl)2

= ∣∣γ M
(hkl)1

− γ M
(hkl)2

∣∣ (14)

Thus, the minimum cusp energy is zero for cusps at
grain boundaries where the bounding (hkl) surfaces are
identical, since the boundary energy disappears in that
case. Conceptually, this form attempts to reflect the fact
that more of the broken bonds from the terminating sur-
face with the smaller broken bond density will connect
to the opposite side than vice versa. Although crude,
this approach has been quite successful in predicting
GB energy for the purpose of identifying GB’s that are
wetted by a liquid phase [5].

4.1. Evaluation of P
The plateau value of the free-volume of a GB terminated
by two different terminating planes has been defined
in Equation 11. By analogy with the expression for the
minimum GB energy at a cusp (Equation 14), we define
the value of the minimum free-volume at a cusp as:

V m
(hkl)1(hkl)2

= ∣∣V M
(hkl)1

− V M
(hkl)2

∣∣, (15)

and the free-volume defined in terms of all five DoF’s
as:

V(hkl)1(hkl)2 (θ ) = V m
(hkl)1(hkl)2

+ f (θ )
{

V M
(hkl)1(hkl)2

−V m
(hkl)1(hkl)2

}
(16)

For a GB bounded by identical (hkl) planes, the num-
ber of bonds connected to the surface of the crystal on
the other side of the boundary is corrected by a factor
P compared to a free surface, as has been discussed

above. Thus, including all five DoF’s, the parameter P
is defined as:

P = 1 − V(hkl)1(hkl)2 (θ ) (17)

Since V(hkl)1(hkl)2 (θ ) is a fraction, we have P > 0
for any GB orientation parameters. If θ = 0, a max-
imum number of bonds will be connected across the
GB, leading to a free-volume parameter of V m

(hkl)1(hkl)2

by Equation 16, or to a free-volume of zero if (hkl)1 =
(hkl)2, where the GB vanishes.

4.2. Evaluation of �Ei
el

The importance of the decrease in elastic strain energy
of a solute atom, �Ei

el , as a driving force for GB segre-
gation, was first suggested by McLean [2] in his seminal
work on GB segregation. Indeed, McLean calculated
GB compositions based on the assumption that elastic
solute strain energy relief provided the only (signifi-
cant) driving force for segregation to grain boundaries.
In general, the strain energy associated with a misfitting
segregating solute species in the bulk of the material
will be partly relieved when the solute is exchanged
with a solvent atom in the vicinity of an interface, thus
leading to a contribution to the overall driving force.
However, how large a fraction of the bulk solute strain
energy can be relieved near an interface, such as a grain
boundary, is still an open question. If the approxima-
tion is made that a solute atom behaves as a misfitting
sphere embedded in an elastic continuum representing
the matrix, then Friedel’s solution for the solute elastic
strain energy can be used [13]. In addition, the change
in elastic energy of a misfitting sphere as it approaches
a surface has been given by Eshelby [14]. Here, we
choose to use these approximations, in a slightly mod-
ified form, to estimate�Ei

el .
Various approaches have been employed to make use

of Eshelby’s result in the context of surface segregation
[4, 6]. There, it is convenient to use an expression that
avoids the singular behavior of the Eshelby approach,
by empirically approximating the relief of solute elastic
strain energy as [4]:

�Ei
el = E(∞) exp

[
−1.01

(
hi

rB

)1.53]
(18)

where hi is the distance of the i th layer from the plane
i = 1, rB is the radius of a solute atom and E (∞) is the
elastic strain energy of a solute atom in the bulk [13]:

E(∞) = 24π K B G ArArB(rA − rB)2

4G ArA + 3K BrB
(19)

In Equation 19, K B is the bulk modulus of the solute
species B, G A is the shear modulus of the solvent, and
rA is the radius of a solvent atom. For hi = 0, Equation
18 leads to�Ei

el = E (∞), i.e. all of the strain energy
associated with the B-atom in the bulk vanishes at the
surface.

The magnitude of strain energy relief when a solute
atom is transferred from the bulk to a GB could be
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smaller than at a free surface, due to the limited free
volume of a boundary. We therefore assume that only
a fraction of the bulk strain energy, proportional to the
‘free volume’ and f(θ ), is dissipated at hi = 0, such
that:

�Ei
el = βV(hkl)1(hkl)2 (θ ) · E(∞) exp

[
−1.01

(
hi

rB

)1.53]

(20)

where β is an adjustable proportionality constant. If
θ = 0, and (hkl)1 = (hkl)2, the GB vanishes and �Ei

el= 0.

4.3. Principal shortcomings of the model
Although the GB energy, as formulated in Equation
12, provides a description in terms of the 5 DoF’s, it
does not correctly predict the energies at cusps corre-
sponding to either symmetric or asymmetric tilt bound-
aries. Consider first the case of boundaries terminated
by identical (hkl) planes. For an angle of θ = 0◦, the
boundary vanishes, and the model correctly predicts a
zero energy. However, the energy of the cusp at θ =
180◦, corresponding to a symmetric tilt boundary, is
also predicted to be zero, instead of some finite value.
For a case where the terminating planes of the bound-
ary do not have identical (hkl), the cusps at 0◦ and 180◦
represent asymmetric tilt boundaries. The energies of
these two boundaries are predicted to be finite, but iden-
tical, which need not be the case. Thus, as currently for-
mulated, the model is not able to correctly predict the
energies of tilt boundaries, or their corresponding free-
volumes. This shortcoming could readily be addressed
by assigning some arbitrary energies (or free volumes)
to the cusps at angles of 0◦ and 180◦ (e.g. some speci-
fied fraction of the plateau values). However, we have
chosen to avoid additional adjustable parameters, since
tilt boundaries account for only a small fraction of the
GB orientation space, and any deficiencies in predicting
their behavior is unlikely to cause serious perturbations
of the overall pattern of segregation.

5. Determination of model parameters
With the expressions for the enthalpies of segrega-
tion (Equations 6a and 3b), and for the layer-by-layer
compositions of each crystal (Equation 2), the compo-
sitions of the near-boundary regions of both crystals
can be computed. The parameters needed for evalua-
tion of the compositions can be obtained as described
below.

In the nearest neighbor approximation, the bond en-
ergies between pairs of like-atoms can be evaluated in
terms of the energies of the (100) surfaces of the pure
elements, γA and γB , as:

εAA = −a2
AγA/4 and εB B = −a2

BγB/4 (21)

If (100) surface energies are not available, then aver-
age surface energies may be used, since the anisotropy
of the surface energy of metals is rather small.

The regular solution constant, ω may be estimated
from the heat of mixing, �Hm , of the alloy:

ω = �Hm/zxB(1 − xB) (22)

The near-boundary compositions of the two (hkl) sur-
faces of the crystals bounding the grain boundary are
evaluated separately, taking the increased coordination
of the atoms near the boundary into account. Since there
is an interaction between the two crystal surfaces joined
at the boundary, the equilibrium grain boundary com-
position must be computed iteratively. Some suitable
average of the near-boundary composition of the grain
on the other side of the boundary must be used for the
variable, x ′, in Equation 6a. Since the compositions of
layers with broken bonds are: xi (i = 1 to J ), we may
denote x ′ by the following average:

x ′ = P
J∑

i=1

J∑
j=i

z j x i

/
P

J∑
i=1

J∑
j=i

z j (23)

In this expression, the P’s cancel, but are included here
for clarity.

6. Model predictions
This model has been developed for the case of fcc binary
substitutional solid solutions. There are few consistent
sets of experimental measurements of grain boundary
segregation over several types of grain boundaries in
simple fcc solutions. Fortunately, however, there are
several results available from computer simulations us-
ing the Monte Carlo method in conjunction with Em-
bedded Atom Method (EAM) potentials. We have se-
lected a consistent set of simulations of the composition
of symmetric <100> twist boundaries from the work
of Udler and Seidman [15, 16], to compare with model
predictions. These authors have also conducted similar
simulations on a set of <110> symmetrical tilt bound-
aries [17]; however, as pointed out above, the model is
not able to deal with tilt boundaries without making ad-
ditional arbitrary assumptions. Thus, we have focused
on the results obtained on twist boundaries.

We show below the predicted GB compositions for
twist boundaries in Pt-1 at%Au, Au-1 at%Pt, Pt-3
at%Ni and Ni-3 at%Pt alloys. In order to produce model
predictions suitable for comparisons with simulations
based on the EAM, we have evaluated the needed model
parameters from the EAM values of various physical
properties, given in Table I [18]. The A-A and B-B bond
energies were evaluated from EAM (100) surface ener-
gies of the pure A and B components; regular solution
constants were obtained from the reported EAM heats
of solution for the various alloys; and the elastic moduli
needed for the evaluation of elastic strain energy terms
were taken from the computed EAM elastic constants,
using the values of C44 for the shear moduli. In the case
of these simple boundaries, where both crystals are ter-
minated by (100) planes, the compositions on both sides
of the boundaries are identical, and the maximum num-
ber of layers lacking complete coordination,J , is just
unity. Thus, the value of x ′ in Equation 6a (defined in
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TABL E I EAM values of physical properties used in model evalua-
tions [18]

Physical properties Au Ni Pt

Lattice constant (Å) 4.05 3.52 3.92
Bulk modulus

(ergs/cm3)
1.67 1.804 2.83

Shear modulus (C44)
(ergs/cm3)

0.45 1.28 0.68

(100) Surface energy
(mJ/m2)

918 1580 1650

Heat of solution (eV) 0.07 (in Pt) −0.25 (in Pt) 0.09 (in Au)
−0.28 (in Ni)

Equation 23) is just equal to x1, the value of the first
atomic layer composition.

Calculations were performed for same boundaries as
those studied by simulation, namely: 5.0◦ (
 = 265),
10.4◦ (
 = 61), 16.3◦ (
 = 25), 22.6◦ (
 = 13), 28.1◦
(
 = 17), 33.9◦ (
 = 289), 36.9◦ (
 = 5), 41.1◦
(
 = 73) and 43.6◦ (
 = 29), (expressed as pairs of
twist angle, and corresponding 
 value).

The GB compositions in the two papers by Udler and
Seidman [15, 16] have been reported in different units.
To avoid any confusion, we report model predictions
in the same manner, i.e. in excess atoms/nm2 for Pt-Au
alloys, and in excess monolayers for Pt-Ni alloys. For
example, in the case of excess monolayers, the segre-
gation is calculated from:

�solute =
∑

i

(xi − x) (24)

where xi is the segregant atom fraction in the i th layer
and x is the bulk atom fraction. This sum must of course
be taken over both sides of boundary.

The model contains two parameters, F and β, which
must be adjusted in order to compare model predictions
with the results of the simulations. It should be recalled
that F represents the ratio of GB energy to surface en-
ergy (for the present purposes, therefore, the values of
ε and a2 in Equation 7b have been set to unity), and
β represents an adjustable parameter for the maximum
solute strain energy which may be relaxed in the vicinity
of a boundary. These parameters were fitted so as to op-
timize the relationship between model predictions and
the results of the simulations. This procedure yields val-
ues of F = 0.32 and β= 3.9. The value of F is reason-
able for the case of GB’s terminated by (100) surfaces.
Since the value of β is almost the reciprocal of F , which
enters into Equation 20 through the term V(hkl)1(hkl)2 (θ )
as a simple multiplicative factor, this implies that the
elastic energy of a GB is virtually independent of either
β or F. In some cases, therefore, it may be possible to
eliminate the adjustable parameter β.

Fig. 3 shows the GB composition, expressed as in-
terfacial excess as a function of twist angle, obtained
from the model, together with to the results of computer
simulations for all four alloys. In all cases, the abso-
lute value of the calculated segregation increases with
twist angle, in agreement with the simulations. How-
ever, the model does not account for the non-monotonic
variation in composition associated with certain low 


(a)

(b)

(c)

Figure 3 Comparison of model predictions for segregation to (100) sym-
metric twist GB’s as a function of twist angle with the simulations of
Udler and Seidman [15, 16]. (a) Pt-1 at%Au, (b) Au-1 at%Pt, and (c)
Ni-3 at%Pt and Pt-3 at%Ni.

boundaries. In the case of Fig. 3a, which illustrates the
temperature dependence of segregation in Pt-1at%Au,
the model predicts a decrease in the magnitude of
segregation with increasing temperature, as generally
expected, and in good agreement with the simulated
results.
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(a) (b)

(c) (d)

Figure 4 Comparison of model predictions of GB composition profiles with the simulations of Udler and Seidman [15, 16], at 850 K for (100) 43.6◦
twist boundaries in (a) Pt-1 at%Au, (b) Au-3 at%Pt, (c) Ni-1 at%Pt and (d) Pt-3 at%Ni. The spacing between the two terminating planes at the GB is
arbitrary, and the line through model predictions has been added to aid the eye. Error bars on simulation results represent one standard deviation.

Fig. 3b shows the extent of segregation in the case
of boundaries in a Au-1 at% Pt alloy. The results, ex-
pressed as Gibbsian excess of solute (Pt) show negative
values, i.e. the model predicts segregation of the solvent
(Au) in this case. This aspect of model predictions is
qualitatively correct, although the predicted magnitude
of segregation is lower than the results of the simula-
tions by about a factor of about 2.

Fig. 3c displays the results obtained for both Pt–3
at%Ni and Ni-3 at%Pt alloys at a given temperature.
Again, the predicted results are in good agreement with
the results of the simulations.

The comparisons shown in Fig. 3 represent a reason-
able test of the model in the following sense. In Pt-Au
and Au-Pt alloys, the atomic sizes of the two compo-
nents are approximately equal, so that the main driving
force for segregation in these alloys comes about from
bond energy terms, whereas the strain energy terms do
not play a major role. In contrast, in Pt-Ni and Ni-Pt
alloys, the surface energy term plays only a minor role,
with the driving force being determined primarily by
the strain energy term.

A second test of the model is provided by a compari-
son between the predicted layer-by-layer compositions
on both sides of the boundary, for the case of 43.6◦
twist boundaries, in all four alloys at 850 K. Again, the
agreement is remarkably good. The principal discrep-
ancy is that segregation to the second layer, on either
side of the GB, is consistently underestimated by the
model. For the most part, the disagreement is small and
is presumably due to the fact that, in the case of GB’s
terminated by (100) planes, only the first layer lacks full
coordination. Under these conditions, the composition
of the second layer is dictated primarily by elastic strain
energy effects.

Finally, we present in Fig. 5 some predictions of the
model for a number of asymmetric boundaries in the
case of the Pt-1at%Au alloy at 1000 K. All of these
boundaries are terminated on one side by (3 1 1) sur-
faces. The (3 1 1) plane lies along the (100) - (111) edge
of the standard stereographic triangle. The other sides
of the GB’s are terminated, respectively, by the (5 3 3)
surface (which also lies along the (100) - (111) edge),
the (744) surface (which lies along the (110) - (111)
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Figure 5 Examples of model predictions for asymmetric twist bound-
aries, as a function of twist angle, for a Pt-1 at%Au alloy at 1000 K. All
the boundaries are terminated by a (311) plane on one side, and by 4
different planes on the other. Arrows indicate the location of cusps.

edge), the (15 4 0) surface (which lies along the (100)
- (110) edge), and the (3 2 1) surface (which lies near
the center of the stereographic triangle). Thus, these
examples sample a reasonable range of possible GB
orientations. When one compares the maximum values
of segregation for each example, they range from about
0.55 to 0.78 excess atoms of Au per nm2, compared
to a maximum of about 0.47 in the same units for the
symmetric twist boundaries of Fig. 3a.

The present comparisons with results of simulations
show that in spite of obvious shortcomings, such as the
use of pairwise interactions, and the assumption that
bond energies are independent of atomic coordination,
this simple model appears to predict reasonable trends.
The advantages of an analytical framework that can be
used, for example, to interpolate segregation behavior
over large data sets of random polycrystalline systems
should be quite valuable.

7. Summary
A simple model, which relies on nearest neighbor bond
energy and elastic strain energy contributions, has been
developed for investigating grain boundary segregation
as a function of the five macroscopic DoF’s of GB
character. The model is based on the combination of a

previous multi-layer model of surface segregation and
a grain boundary energy model.

The model has been tested by comparing its predic-
tions of segregation to symmetric <100> twist bound-
aries in Pt-1 at%Au, Au-1 at%Pt, Pt-3 at%Ni and Ni-3
at%Pt alloys, against previous computer simulations
of segregation at those boundaries obtained by Monte
Carlo methods in conjunction with EAM potentials.
The agreement obtained in this comparison has been
quite good from both qualitative and quantitative per-
spectives. Thus, this model should be quite valuable for
the interpretation of large sets of grain boundary seg-
regation data acquired as a function of the five macro-
scopic DoF’s of grain boundary character.
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